Vision Algorithms

Vision Algorithms for Embedded Vision

Most computer vision algorithms were developed on general-purpose computer systems with software written in a high-level language

Most computer vision algorithms were developed on general-purpose computer systems with software written in a high-level language. Some of the pixel-processing operations (ex: spatial filtering) have changed very little in the decades since they were first implemented on mainframes. With today’s broader embedded vision implementations, existing high-level algorithms may not fit within the system constraints, requiring new innovation to achieve the desired results.

Some of this innovation may involve replacing a general-purpose algorithm with a hardware-optimized equivalent. With such a broad range of processors for embedded vision, algorithm analysis will likely focus on ways to maximize pixel-level processing within system constraints.

This section refers to both general-purpose operations (ex: edge detection) and hardware-optimized versions (ex: parallel adaptive filtering in an FPGA). Many sources exist for general-purpose algorithms. The Embedded Vision Alliance is one of the best industry resources for learning about algorithms that map to specific hardware, since Alliance Members will share this information directly with the vision community.

General-purpose computer vision algorithms

Introduction To OpenCV Figure 1

One of the most-popular sources of computer vision algorithms is the OpenCV Library. OpenCV is open-source and currently written in C, with a C++ version under development. For more information, see the Alliance’s interview with OpenCV Foundation President and CEO Gary Bradski, along with other OpenCV-related materials on the Alliance website.

Hardware-optimized computer vision algorithms

Several programmable device vendors have created optimized versions of off-the-shelf computer vision libraries. NVIDIA works closely with the OpenCV community, for example, and has created algorithms that are accelerated by GPGPUs. MathWorks provides MATLAB functions/objects and Simulink blocks for many computer vision algorithms within its Vision System Toolbox, while also allowing vendors to create their own libraries of functions that are optimized for a specific programmable architecture. National Instruments offers its LabView Vision module library. And Xilinx is another example of a vendor with an optimized computer vision library that it provides to customers as Plug and Play IP cores for creating hardware-accelerated vision algorithms in an FPGA.

Other vision libraries

  • Halcon
  • Matrox Imaging Library (MIL)
  • Cognex VisionPro
  • VXL
  • CImg
  • Filters

LLiMa: SiMa.ai’s Automated Code Generation Framework for LLMs and VLMs for <10W

This blog post was originally published at SiMa.ai’s website. It is reprinted here with the permission of SiMa.ai. In our blog post titled “Implementing Multimodal GenAI Models on Modalix”, we describe how SiMa.ai’s MLSoC Modalix enables Generative AI models to be implemented for Physical AI applications with low latency and low power consumption.  We implemented

Read More »

“Introduction to Deep Learning and Visual AI: Fundamentals and Architectures,” a Presentation from eBay

Mohammad Haghighat, Senior Manager for CoreAI at Bay, presents the “Introduction to Deep Learning and Visual AI: Fundamentals and Architectures” tutorial at the May 2025 Embedded Vision Summit. This talk provides a high-level introduction to artificial intelligence and deep learning, covering the basics of machine learning and the key concepts… “Introduction to Deep Learning and

Read More »

Why Synthetic Data Is Shaping the Future of Computer Vision

This blog post was originally published at Geisel Software’s Symage website. It is reprinted here with the permission of Geisel Software. The future of “seeing” Synthetic data solves data bottlenecks: It reduces the time and cost of collecting and labeling data—particularly rare edge cases—which often consume the majority of AI development time. Complex scenes remain

Read More »

“Deep Sentinel: Lessons Learned Building, Operating and Scaling an Edge AI Computer Vision Company,” a Presentation from Deep Sentinel

David Selinger, CEO of Deep Sentinel, presents the “Deep Sentinel: Lessons Learned Building, Operating and Scaling an Edge AI Computer Vision Company” tutorial at the May 2025 Embedded Vision Summit. Deep Sentinel’s edge AI security cameras stop some 45,000 crimes per year. Unlike most security camera systems, they don’t just… “Deep Sentinel: Lessons Learned Building,

Read More »

Automated Driving for All: Snapdragon Ride Pilot System Brings State-of-the-art Safety and Comfort Features to Drivers Across the Globe

This blog post was originally published at Qualcomm’s website. It is reprinted here with the permission of Qualcomm. Qualcomm Technologies, Inc. introduces Snapdragon Ride Pilot at IAA Mobility 2025 What you should know: Qualcomm Technologies, Inc. has introduced Snapdragon Ride Pilot to help make driving more safety-focused and convenient for people around the world. Features

Read More »

“Introduction to Knowledge Distillation: Smaller, Smarter AI Models for the Edge,” a Presentation from Deep Sentinel

David Selinger, CEO of Deep Sentinel, presents the “Introduction to Knowledge Distillation: Smaller, Smarter AI Models for the Edge” tutorial at the May 2025 Embedded Vision Summit. As edge computing demands smaller, more efficient models, knowledge distillation emerges as a key approach to model compression. In this presentation, Selinger delves… “Introduction to Knowledge Distillation: Smaller,

Read More »

Smarter, Faster, More Personal AI Delivered on Consumer Devices with Arm’s New Lumex CSS Platform, Driving Double-digit Performance Gains

News Highlights: Arm Lumex CSS platform unlocks real-time on-device AI use cases like assistants, voice translation and personalization, with new SME2-enabled Arm CPUs delivering up to 5x faster AI performance Developers can access SME2 performance with KleidiAI, now integrated into all major mobile OSes and AI frameworks, including PyTorch ExecuTorch, Google LiteRT, Alibaba MNN and

Read More »

Qualcomm and Google Cloud Deepen Collaboration to Bring Agentic AI Experiences to the Auto Industry

Highlights: Landmark technical collaboration brings together the strengths of two industry leaders with Google Gemini models and Qualcomm Snapdragon Digital Chassis solutions to help automakers create deeply personalized and advanced AI agents that will redefine customers’ experiences at every point in their journeys. Combines the best of both worlds – powerful on-device AI for instant,

Read More »

“Mastering the End-to-end Machine Learning Model Building Process: Best Practices and Pitfalls,” a Presentation from Caterpillar

Paril Ghori, Senior Data Scientist at Caterpillar, presents the “Mastering the End-to-end Machine Learning Model Building Process: Best Practices and Pitfalls” tutorial at the May 2025 Embedded Vision Summit. In this talk, Ghori explores the complete machine learning model building process, providing data scientists and ML engineers with practical insights… “Mastering the End-to-end Machine Learning

Read More »

“Strategies for Image Dataset Curation from High-volume Industrial IoT Data,” a Presentation from Brambles

Dan Bricarello, Computer Vision Lead, and Apurva Godghase, Senior Computer Vision Engineer, both of Brambles, co-present the “Strategies for Image Dataset Curation from High-volume Industrial IoT Data” tutorial at the May 2025 Embedded Vision Summit. In industrial supply chain and logistics applications, edge IoT devices capture data continuously, generating massive… “Strategies for Image Dataset Curation

Read More »

Qualcomm and BMW Group Unveil Groundbreaking Automated Driving System with Jointly Developed Software Stack

Highlights: AI-enabled Snapdragon Ride Pilot Automated Driving System, powered by Snapdragon Ride system-on-chips and a new jointly developed automated driving software stack, debuts in the all-new BMW iX3 at IAA Mobility 2025. System is validated in 60 countries worldwide and is targeted to be available in more than 100 countries by 2026. Scalable platform enabling

Read More »

Building a Versatile Vision Data Simulation Platform: Key Components and Architecture

This blog post was originally published at Geisel Software’s Symage website. It is reprinted here with the permission of Geisel Software. Are Real-World Data Limitations Holding Back Your AI Models? KEY TAKEAWAYS: Versatile Data Simulation Powers Industry Relevance A truly effective vision data simulation platform leverages modular architecture and configurable domain parameters to adapt seamlessly

Read More »

“Taking Computer Vision Products from Prototype to Robust Product,” an Interview with Blue River Technology

Chris Padwick, Machine Learning Engineer at Blue River Technology, talks with Mark Jamtgaard, Director of Technology at RetailNext for the “Taking Computer Vision Products from Prototype to Robust Product,” interview at the May 2025 Embedded Vision Summit. When developing computer vision-based products, getting from a proof of concept to a… “Taking Computer Vision Products from

Read More »

GenAI Firsts: Redefining What’s Possible At the Edge

This blog post was originally published at Qualcomm’s website. It is reprinted here with the permission of Qualcomm. How our pioneering research and leading proof-of-concepts are paving the way for generative AI to scale What you should know: Qualcomm AI Research is pioneering research and inventing novel techniques to deliver efficient, high-performance GenAI solutions. Our

Read More »

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top