Vision Algorithms

Vision Algorithms for Embedded Vision

Most computer vision algorithms were developed on general-purpose computer systems with software written in a high-level language

Most computer vision algorithms were developed on general-purpose computer systems with software written in a high-level language. Some of the pixel-processing operations (ex: spatial filtering) have changed very little in the decades since they were first implemented on mainframes. With today’s broader embedded vision implementations, existing high-level algorithms may not fit within the system constraints, requiring new innovation to achieve the desired results.

Some of this innovation may involve replacing a general-purpose algorithm with a hardware-optimized equivalent. With such a broad range of processors for embedded vision, algorithm analysis will likely focus on ways to maximize pixel-level processing within system constraints.

This section refers to both general-purpose operations (ex: edge detection) and hardware-optimized versions (ex: parallel adaptive filtering in an FPGA). Many sources exist for general-purpose algorithms. The Embedded Vision Alliance is one of the best industry resources for learning about algorithms that map to specific hardware, since Alliance Members will share this information directly with the vision community.

General-purpose computer vision algorithms

Introduction To OpenCV Figure 1

One of the most-popular sources of computer vision algorithms is the OpenCV Library. OpenCV is open-source and currently written in C, with a C++ version under development. For more information, see the Alliance’s interview with OpenCV Foundation President and CEO Gary Bradski, along with other OpenCV-related materials on the Alliance website.

Hardware-optimized computer vision algorithms

Several programmable device vendors have created optimized versions of off-the-shelf computer vision libraries. NVIDIA works closely with the OpenCV community, for example, and has created algorithms that are accelerated by GPGPUs. MathWorks provides MATLAB functions/objects and Simulink blocks for many computer vision algorithms within its Vision System Toolbox, while also allowing vendors to create their own libraries of functions that are optimized for a specific programmable architecture. National Instruments offers its LabView Vision module library. And Xilinx is another example of a vendor with an optimized computer vision library that it provides to customers as Plug and Play IP cores for creating hardware-accelerated vision algorithms in an FPGA.

Other vision libraries

  • Halcon
  • Matrox Imaging Library (MIL)
  • Cognex VisionPro
  • VXL
  • CImg
  • Filters

“LLMs and VLMs for Regulatory Compliance, Quality Control and Safety Applications,” a Presentation from Camio

Lazar Trifunovic, Solutions Architect at Camio, presents the “LLMs and VLMs for Regulatory Compliance, Quality Control and Safety Applications” tutorial at the May 2025 Embedded Vision Summit. By using vision-language models (VLMs) or combining large language models (LLMs) with conventional computer vision models, we can create vision systems that are… “LLMs and VLMs for Regulatory

Read More »

NVIDIA Opens Portals to World of Robotics With New Omniverse Libraries, Cosmos Physical AI Models and AI Computing Infrastructure

New NVIDIA Omniverse NuRec 3D Gaussian Splatting Libraries Enable Large-Scale World Reconstruction New NVIDIA Cosmos Models Enable World Generation and Spatial Reasoning New NVIDIA RTX PRO Blackwell Servers and NVIDIA DGX Cloud Let Developers Run the Most Demanding Simulations Anywhere Physical AI Leaders Amazon Devices & Services, Boston Dynamics, Figure AI and Hexagon Embrace Simulation and Synthetic Data Generation August 11, 2025—SIGGRAPH—NVIDIA

Read More »

“Quantization Techniques for Efficient Deployment of Large Language Models: A Comprehensive Review,” a Presentation from AMD

Dwith Chenna, MTS Product Engineer for AI Inference at AMD, presents the “Quantization Techniques for Efficient Deployment of Large Language Models: A Comprehensive Review” tutorial at the May 2025 Embedded Vision Summit. The deployment of large language models (LLMs) in resource-constrained environments is challenging due to the significant computational and… “Quantization Techniques for Efficient Deployment

Read More »

Learn to Optimize Stable Diffusion on Qualcomm Cloud AI 100

This blog post was originally published at Qualcomm’s website. It is reprinted here with the permission of Qualcomm. Dive in to learn how we achieve a 1.4x latency decrease on Qualcomm Cloud AI 100 Ultra accelerators by applying an innovative DeepCache technique to text-to-image generation. What’s more, the throughput can be further improved by 3x

Read More »

Machine Vision Defect Detection: Edge AI Processing with Texas Instruments AM6xA Arm-based Processors

Texas Instruments’ portfolio of AM6xA Arm-based processors are designed to advance intelligence at the edge using high resolution camera support, an integrated image sensor processor and deep learning accelerator. This video demonstrates using AM62A to run a vision-based artificial intelligence model for defect detection for manufacturing applications. Watch the model test the produced units as

Read More »

Optimizing LLMs for Performance and Accuracy with Post-training Quantization

This article was originally published at NVIDIA’s website. It is reprinted here with the permission of NVIDIA. Quantization is a core tool for developers aiming to improve inference performance with minimal overhead. It delivers significant gains in latency, throughput, and memory efficiency by reducing model precision in a controlled way—without requiring retraining. Today, most models

Read More »

Alif Semiconductor Demonstration of Face Detection and Driver Monitoring On a Battery, at the Edge

Alexandra Kazerounian, Senior Product Marketing Manager at Alif Semiconductor, demonstrates the company’s latest edge AI and vision technologies and products at the 2025 Embedded Vision Summit. Specifically, Kazerounian demonstrates how AI/ML workloads can run directly on her company’s ultra-low-power Ensemble and Balletto 32-bit microcontrollers. Watch as the AI/ML AppKit runs real-time face detection using an

Read More »

Inuitive Demonstration of On-camera SLAM, Depth and AI Using a NU4X00-based Sensor Module

Shay Harel, Field Application Engineer at Inuitive, demonstrates the company’s latest edge AI and vision technologies and products at the 2025 Embedded Vision Summit. Specifically, Harel demonstrates one of several examples his company presented at the Summit, highlighting the capabilities of its latest vision-on-chip technology. In this demo, the NU4X00 processor performs depth sensing, object

Read More »

Nota AI Demonstration of Nota Vision Agent, Next-generation Video Monitoring at the Edge

Tae-Ho Kim, CTO and Co-founder of Nota AI, demonstrates the company’s latest edge AI and vision technologies and products at the 2025 Embedded Vision Summit. Specifically, Kim demonstrates Nota Vision Agent—a next-generation video monitoring solution powered by Vision Language Models (VLMs). The solution delivers real-time analytics and intelligent alerts across critical domains including industrial safety,

Read More »

Nota AI Demonstration of NetsPresso Optimization Studio, Streamlined with Visual Insights

Tairen Piao, Research Engineer at Nota AI, demonstrates the company’s latest edge AI and vision technologies and products at the 2025 Embedded Vision Summit. Specifically, Piao demonstrates NetsPresso Optimization Studio, the latest enhancement to Nota AI’s model optimization platform, NetsPresso. This intuitive interface simplifies the AI optimization process with advanced layer-wise analysis and automated quantization.

Read More »

How to Run Coding Assistants for Free on RTX AI PCs and Workstations

This blog post was originally published at NVIDIA’s website. It is reprinted here with the permission of NVIDIA. AI-powered copilots deliver real-time assistance for projects from academic projects to production code — and are optimized for RTX AI PCs. Coding assistants or copilots — AI-powered assistants that can suggest, explain and debug code — are

Read More »

Microchip Technology Demonstration of Real-time Object and Facial Recognition with Edge AI Platforms

Swapna Guramani, Applications Engineer for Microchip Technology, demonstrates the company’s latest edge AI and vision technologies and products at the 2025 Embedded Vision Summit. Specifically, Guramani demonstrates her company’s latest AI/ML capabilities in action: real-time object recognition using the SAMA7G54 32-bit MPU running Edge Impulse’s FOMO model, and facial recognition powered by TensorFlow Lite’s Mobile

Read More »

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top