Processors for Embedded Vision


This technology category includes any device that executes vision algorithms or vision system control software. The following diagram shows a typical computer vision pipeline; processors are often optimized for the compute-intensive portions of the software workload.

ev pipeline

The following examples represent distinctly different types of processor architectures for embedded vision, and each has advantages and trade-offs that depend on the workload. For this reason, many devices combine multiple processor types into a heterogeneous computing environment, often integrated into a single semiconductor component. In addition, a processor can be accelerated by dedicated hardware that improves performance on computer vision algorithms.

General-purpose CPUs

While computer vision algorithms can run on most general-purpose CPUs, desktop processors may not meet the design constraints of some systems. However, x86 processors and system boards can leverage the PC infrastructure for low-cost hardware and broadly-supported software development tools. Several Alliance Member companies also offer devices that integrate a RISC CPU core. A general-purpose CPU is best suited for heuristics, complex decision-making, network access, user interface, storage management, and overall control. A general purpose CPU may be paired with a vision-specialized device for better performance on pixel-level processing.

Graphics Processing Units

High-performance GPUs deliver massive amounts of parallel computing potential, and graphics processors can be used to accelerate the portions of the computer vision pipeline that perform parallel processing on pixel data. While General Purpose GPUs (GPGPUs) have primarily been used for high-performance computing (HPC), even mobile graphics processors and integrated graphics cores are gaining GPGPU capability—meeting the power constraints for a wider range of vision applications. In designs that require 3D processing in addition to embedded vision, a GPU will already be part of the system and can be used to assist a general-purpose CPU with many computer vision algorithms. Many examples exist of x86-based embedded systems with discrete GPGPUs.

Digital Signal Processors

DSPs are very efficient for processing streaming data, since the bus and memory architecture are optimized to process high-speed data as it traverses the system. This architecture makes DSPs an excellent solution for processing image pixel data as it streams from a sensor source. Many DSPs for vision have been enhanced with coprocessors that are optimized for processing video inputs and accelerating computer vision algorithms. The specialized nature of DSPs makes these devices inefficient for processing general-purpose software workloads, so DSPs are usually paired with a RISC processor to create a heterogeneous computing environment that offers the best of both worlds.

Field Programmable Gate Arrays (FPGAs)

Instead of incurring the high cost and long lead-times for a custom ASIC to accelerate computer vision systems, designers can implement an FPGA to offer a reprogrammable solution for hardware acceleration. With millions of programmable gates, hundreds of I/O pins, and compute performance in the trillions of multiply-accumulates/sec (tera-MACs), high-end FPGAs offer the potential for highest performance in a vision system. Unlike a CPU, which has to time-slice or multi-thread tasks as they compete for compute resources, an FPGA has the advantage of being able to simultaneously accelerate multiple portions of a computer vision pipeline. Since the parallel nature of FPGAs offers so much advantage for accelerating computer vision, many of the algorithms are available as optimized libraries from semiconductor vendors. These computer vision libraries also include preconfigured interface blocks for connecting to other vision devices, such as IP cameras.

Vision-Specific Processors and Cores

Application-specific standard products (ASSPs) are specialized, highly integrated chips tailored for specific applications or application sets. ASSPs may incorporate a CPU, or use a separate CPU chip. By virtue of their specialization, ASSPs for vision processing typically deliver superior cost- and energy-efficiency compared with other types of processing solutions. Among other techniques, ASSPs deliver this efficiency through the use of specialized coprocessors and accelerators. And, because ASSPs are by definition focused on a specific application, they are usually provided with extensive associated software. This same specialization, however, means that an ASSP designed for vision is typically not suitable for other applications. ASSPs’ unique architectures can also make programming them more difficult than with other kinds of processors; some ASSPs are not user-programmable.

“An Industry Standard Performance Benchmark Suite for Machine Learning,” a Presentation from MLPerf

Christine Cheng, co-chair of the inference benchmark working group at MLPerf and a senior machine learning optimization engineer at Intel, delivers the presentation “MLPerf: An Industry Standard Performance Benchmark Suite for Machine Learning” at the Edge AI and Vision Alliance’s July 2020 Edge AI and Vision Innovation Forum. Cheng explains… “An Industry Standard Performance Benchmark

Read More »

“Once-for-All DNNs: Simplifying Design of Efficient Models for Diverse Hardware,” a Presentation from MIT

Song Han, Associate Professor in the Department of Electrical Engineering and Computer Science at MIT, delivers the presentation “Once-for-All DNNs: Simplifying Design of Efficient Models for Diverse Hardware” at the Edge AI and Vision Alliance’s July 2020 Edge AI and Vision Innovation Forum. Han shares his group’s latest research on… “Once-for-All DNNs: Simplifying Design of

Read More »

Accelerating TensorFlow on NVIDIA A100 GPUs

This blog post was originally published at NVIDIA’s website. It is reprinted here with the permission of NVIDIA. The NVIDIA A100, based on the NVIDIA Ampere GPU architecture, offers a suite of exciting new features: third-generation Tensor Cores, Multi-Instance GPU (MIG) and third-generation NVLink. Ampere Tensor Cores introduce a novel math mode dedicated for AI

Read More »

2020 Vision Tank Start-Up Final Competition Round

Jay Cormier, CEO of Eyedaptic, Vaibhav Ghadiok, VP of Engineering at Hayden AI, Chuck Gershman, CEO and Co-founder of Owl Autonomous Imaging, Gregor Horstmeyer, Head of Product at Ramona Optics, and Owen Nicholson, CEO of SLAMcore, deliver their Vision Tank presentations at the July 16, 2020 online finalist competition round. The Vision Tank introduces companies

Read More »

Introducing 2nd G‍eneration IP‌U Systems For A‍I At Scale

I am delighted to introduce our second-generation IPU platform with greater processing power, more memory and built-in scalability for handling extremely large Machine Intelligence workloads. The IPU-Machine M2000 is a plug-and-play Machine Intelligence compute blade that has been designed for easy deployment and supports systems that can grow to massive scale. The slim 1U blade

Read More »

Qualcomm Announces Snapdragon 865 Plus 5G Mobile Platform

Upgraded Flagship Mobile Platform to Power Second Half 2020 Commercial Smartphones Jul 8, 2020 – SAN DIEGO – Qualcomm Technologies, Inc. unveiled the Qualcomm® Snapdragon™ 865 Plus 5G Mobile Platform, a follow-on to the flagship Snapdragon 865 that has powered more than 140 devices (announced or in development) – the most individual premium-tier designs powered

Read More »

Qualcomm Brings Advanced Artificial Intelligence and Machine Learning Capabilities to Address Multiple Tiers of Smart Cameras with New System-on-Chips

Designed to deliver improved AI performance, multiple connectivity options, and design development efficiency while enabling more affordable devices Jul 7, 2020 – SAN DIEGO – Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, today announced the introduction of the Qualcomm® QCS610 and Qualcomm® QCS410 system-on-chips (SoCs) to the Qualcomm® Vision Intelligence Platform. The QCS610 and

Read More »

Arm Intends to Strengthen Focus on Core Semiconductor IP Business Growth

July 07, 2020 – Today, Arm announced proposed strategic organizational changes to strengthen its focus on growth and profitability. The company is proposing to transfer its two IoT Services Group (ISG) businesses, IoT Platform and Treasure Data, to new entities that would be owned and operated by SoftBank Group Corp. and its affiliates. Upon completion

Read More »

Videantis Processor Platform Adopted for TEMPO Neuromorphic Edge AI Chip

July 7, 2020, Hannover, Germany – videantis GmbH, a leading supplier of deep learning, computer vision and video coding solutions, today announced the adoption of its next-generation digital AI multi-core processor platform and toolflow for a neuromorphic mixed-signal edge AI chip. The development is part of the European TEMPO project and targets several autonomous driving

Read More »

Edge Computing Software that Simplifies Edge AI

This blog post was originally published at Intel’s website. It is reprinted here with the permission of Intel. 2020 has presented significant challenges, such as COVID-19, as well as opportunities that put human resiliency into perspective and priorities reconsidered across industries and our daily lives. However, the need to do more with data in more

Read More »

How To Choose the Best AI Processor for the Edge

This blog post was originally published by Bitfury. It is reprinted here with the permission of Bitfury. We are in the middle of one of the largest technological revolutions in history. The growing popularity of the Internet of Things, combined with significant advances in artificial intelligence, will culminate in a wave of digital disruption, changing

Read More »

MediaTek Introduces Helio G35 & G25 Gaming Series Chipsets

Built for mainstream gaming smartphones, Helio G25 & G35 include MediaTek HyperEngine game technology, premium imaging, and camera support NEW DELHI – June 30, 2020 – MediaTek, the world’s 4th largest global fabless semiconductor company, today launched its newest chips in the smartphone gaming-focused G series – the MediaTek Helio G25 and G35. The latest chips

Read More »

Khronos Steps Towards Widespread Deployment of SYCL with Release of SYCL 2020 Provisional Specification

SYCL 2020 features are available now in Intel’s DPC++ and Codeplay’s ComputeCpp; Developers encouraged to provide feedback on the publicly available specification for C++ based heterogeneous parallel programming Beaverton, OR – June 30, 2020 – Today, The Khronos® Group, an open consortium of industry-leading companies creating graphics and compute interoperability standards, announces the ratification and public

Read More »

CUDA Refresher: The GPU Computing Ecosystem

This blog post was originally published at NVIDIA’s website. It is reprinted here with the permission of NVIDIA. This is the third post in the CUDA Refresher series, which has the goal of refreshing key concepts in CUDA, tools, and optimization for beginning or intermediate developers. Ease of programming and a giant leap in performance

Read More »

World’s Top System Makers Unveil NVIDIA A100-Powered Servers to Accelerate AI, Data Science and Scientific Computing

Cisco, Dell Technologies, HPE, Inspur, Lenovo, Supermicro Announce Systems Coming This Summer Monday, June 22, 2020—ISC Digital—NVIDIA and the world’s leading server manufacturers today announced NVIDIA A100-powered systems in a variety of designs and configurations to tackle the most complex challenges in AI, data science and scientific computing. More than 50 A100-powered servers from leading

Read More »

Intel Announces Unmatched AI and Analytics Platform with New Processor, Memory, Storage and FPGA Solutions

What’s New: Intel today introduced its 3rd Gen Intel® Xeon® Scalable processors and additions to its hardware and software AI portfolio, enabling customers to accelerate the development and use of artificial intelligence (AI) and analytics workloads running in data center, network and intelligent-edge environments. As the industry’s first mainstream server processor with built-in bfloat16 support, Intel’s

Read More »

Qualcomm Announces First 5G Snapdragon 6-Series Mobile Platform

Global Original Equipment Manufacturers Demonstrate Strong Support for New Platform June 16, 2020 – San Diego – Qualcomm Technologies, Inc. announced its first 5G mobile platform in the 6-series, the Qualcomm® Snapdragon™ 690 5G Mobile Platform. This new platform is designed to make 5G user experiences even more broadly available around the world. Snapdragon 690 also supports remarkable

Read More »

Horizon Journey 2 Honored with the Vision Product of the Year Award

This news post was originally published by Horizon Robotics. It is reprinted here with the permission of Horizon Robotics. Horizon Journey ™️ 2, the automotive AI Processor developed by AI solution provider Horizon Robotics, has been honored the Vision Product of the Year Award as the Best Automotive Solution, presented by the Edge AI and

Read More »

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.



1646 North California Blvd.,
Suite 360
Walnut Creek, CA 94596 USA

Phone: +1 (925) 954-1411
Scroll to Top