Vision Algorithms

Vision Algorithms for Embedded Vision

Most computer vision algorithms were developed on general-purpose computer systems with software written in a high-level language

Most computer vision algorithms were developed on general-purpose computer systems with software written in a high-level language. Some of the pixel-processing operations (ex: spatial filtering) have changed very little in the decades since they were first implemented on mainframes. With today’s broader embedded vision implementations, existing high-level algorithms may not fit within the system constraints, requiring new innovation to achieve the desired results.

Some of this innovation may involve replacing a general-purpose algorithm with a hardware-optimized equivalent. With such a broad range of processors for embedded vision, algorithm analysis will likely focus on ways to maximize pixel-level processing within system constraints.

This section refers to both general-purpose operations (ex: edge detection) and hardware-optimized versions (ex: parallel adaptive filtering in an FPGA). Many sources exist for general-purpose algorithms. The Embedded Vision Alliance is one of the best industry resources for learning about algorithms that map to specific hardware, since Alliance Members will share this information directly with the vision community.

General-purpose computer vision algorithms

Introduction To OpenCV Figure 1

One of the most-popular sources of computer vision algorithms is the OpenCV Library. OpenCV is open-source and currently written in C, with a C++ version under development. For more information, see the Alliance’s interview with OpenCV Foundation President and CEO Gary Bradski, along with other OpenCV-related materials on the Alliance website.

Hardware-optimized computer vision algorithms

Several programmable device vendors have created optimized versions of off-the-shelf computer vision libraries. NVIDIA works closely with the OpenCV community, for example, and has created algorithms that are accelerated by GPGPUs. MathWorks provides MATLAB functions/objects and Simulink blocks for many computer vision algorithms within its Vision System Toolbox, while also allowing vendors to create their own libraries of functions that are optimized for a specific programmable architecture. National Instruments offers its LabView Vision module library. And Xilinx is another example of a vendor with an optimized computer vision library that it provides to customers as Plug and Play IP cores for creating hardware-accelerated vision algorithms in an FPGA.

Other vision libraries

  • Halcon
  • Matrox Imaging Library (MIL)
  • Cognex VisionPro
  • VXL
  • CImg
  • Filters

XR Tech Market Report

Woodside Capital Partners (WCP) is pleased to share its XR Tech Market Report, authored by senior bankers Alain Bismuth and Rudy Burger, and by analyst Alex Bonilla. Why we are interested in the XR Ecosystem Investors have been pouring billions of dollars into developing enabling technologies for augmented reality (AR) glasses aimed at the consumer market,

Read More »

OpenAI’s gpt-oss-20b: Its First Open-source Reasoning Model to Run on Devices with Snapdragon

This blog post was originally published at Qualcomm’s website. It is reprinted here with the permission of Qualcomm. At Qualcomm Technologies, we’ve long believed that AI assistants will be ubiquitous, personal and on-device. Today, we’re excited to share a major milestone in that journey: OpenAI has open-sourced its first reasoning model, gpt-oss-20b, a chain-of-thought reasoning

Read More »

“Visual Search: Fine-grained Recognition with Embedding Models for the Edge,” a Presentation from Gimlet Labs

Omid Azizi, Co-Founder of Gimlet Labs, presents the “Visual Search: Fine-grained Recognition with Embedding Models for the Edge” tutorial at the May 2025 Embedded Vision Summit. In the domain of AI vision, we have seen an explosion of models that can reliably detect objects of various types, from people to… “Visual Search: Fine-grained Recognition with

Read More »

“Optimizing Real-time SLAM Performance for Autonomous Robots with GPU Acceleration,” a Presentation from eInfochips

Naitik Nakrani, Solution Architect Manager at eInfochips, presents the “Optimizing Real-time SLAM Performance for Autonomous Robots with GPU Acceleration” tutorial at the May 2025 Embedded Vision Summit. Optimizing execution time of long-term and large-scale SLAM algorithms is essential for real-time deployments on edge compute platforms. Faster SLAM output means faster… “Optimizing Real-time SLAM Performance for

Read More »

SiMa.ai Next-Gen Platform for Physical AI in Production

Modalix in Production, Now Shipping SoM Pin-Compatible with leading GPU SoM, Dev Kits, and LLiMa for Seamless LLM-to-Modalix Integration SAN JOSE, Calif., August 12, 2025 — SiMa.ai, a pioneer in Physical AI solutions, today is making three significant product announcements to accelerate the scaling of Physical AI. Production and immediate availability of its next-generation Physical

Read More »

“LLMs and VLMs for Regulatory Compliance, Quality Control and Safety Applications,” a Presentation from Camio

Lazar Trifunovic, Solutions Architect at Camio, presents the “LLMs and VLMs for Regulatory Compliance, Quality Control and Safety Applications” tutorial at the May 2025 Embedded Vision Summit. By using vision-language models (VLMs) or combining large language models (LLMs) with conventional computer vision models, we can create vision systems that are… “LLMs and VLMs for Regulatory

Read More »

NVIDIA Opens Portals to World of Robotics With New Omniverse Libraries, Cosmos Physical AI Models and AI Computing Infrastructure

New NVIDIA Omniverse NuRec 3D Gaussian Splatting Libraries Enable Large-Scale World Reconstruction New NVIDIA Cosmos Models Enable World Generation and Spatial Reasoning New NVIDIA RTX PRO Blackwell Servers and NVIDIA DGX Cloud Let Developers Run the Most Demanding Simulations Anywhere Physical AI Leaders Amazon Devices & Services, Boston Dynamics, Figure AI and Hexagon Embrace Simulation and Synthetic Data Generation August 11, 2025—SIGGRAPH—NVIDIA

Read More »

“Quantization Techniques for Efficient Deployment of Large Language Models: A Comprehensive Review,” a Presentation from AMD

Dwith Chenna, MTS Product Engineer for AI Inference at AMD, presents the “Quantization Techniques for Efficient Deployment of Large Language Models: A Comprehensive Review” tutorial at the May 2025 Embedded Vision Summit. The deployment of large language models (LLMs) in resource-constrained environments is challenging due to the significant computational and… “Quantization Techniques for Efficient Deployment

Read More »

Learn to Optimize Stable Diffusion on Qualcomm Cloud AI 100

This blog post was originally published at Qualcomm’s website. It is reprinted here with the permission of Qualcomm. Dive in to learn how we achieve a 1.4x latency decrease on Qualcomm Cloud AI 100 Ultra accelerators by applying an innovative DeepCache technique to text-to-image generation. What’s more, the throughput can be further improved by 3x

Read More »

Machine Vision Defect Detection: Edge AI Processing with Texas Instruments AM6xA Arm-based Processors

Texas Instruments’ portfolio of AM6xA Arm-based processors are designed to advance intelligence at the edge using high resolution camera support, an integrated image sensor processor and deep learning accelerator. This video demonstrates using AM62A to run a vision-based artificial intelligence model for defect detection for manufacturing applications. Watch the model test the produced units as

Read More »

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top